Group Schemes out of Birational Group Laws , Néron Models
نویسنده
چکیده
— In this note, we present the theorem of extension of birational group laws in both settings of classical varieties (Weil) and schemes (Artin). We improve slightly the original proof and result with a more direct construction of the group extension, a discussion of its separation properties, and the systematic use of algebraic spaces. We also explain the important application to the construction of Néron models of abelian varieties. This note grew out of lectures given by Ariane Mézard and the second author at the Summer School ”Schémas en groupes” held in the CIRM (Luminy) from 29 August to 9 September, 2011. Résumé. — Dans cette note, nous présentons le théorème d’extension d’une loi de groupe birationnelle en un groupe algébrique, dans le cadre des variétés algébriques classiques (Weil) et des schémas (Artin). Nous améliorons légèrement le résultat original et sa preuve en donnant une construction plus directe du groupe, en apportant des compléments sur ses propriétés de séparation, et en utilisant systématiquement les espaces algébriques. Nous expliquons aussi l’application importante à la construction des modèles de Néron des variétés abéliennes. Cette note est issue des cours donnés par Ariane Mézard et le second auteur à l’École d’été ”Schémas en groupes” qui s’est tenue au CIRM (Luminy) du 29 août au 9 septembre 2011.
منابع مشابه
On the Néron models of abelian surfaces with quaternionic multiplication
In this paper we construct a certain proper regular model for abelian surfaces with quaternionic multiplication. The construction applies when the residue characteristic p > 3 or more generally in the tamely ramified case. Our model has the property that the Néron model can be recovered as its smooth locus. We therefore obtain both the Néron model and a compactification of it. We are able to gi...
متن کاملNéron models and compactified Picard schemes over the moduli stack of stable curves
We construct modular Deligne-Mumford stacks Pd,g representable over Mg parametrizing Néron models of Jacobians as follows. Let B be a smooth curve andK its function field, let XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model N(Pic XK) → B is then the base change of Pd,g via the moduli map B −→ Mg of f , i.e.: N(Pic XK) ∼= Pd,g ×Mg B. Moreover Pd,g is co...
متن کاملNÉRON MODELS AND COMPACTIFIED PICARD SCHEMES OVER THE MODULI STACK OF STABLE CURVES By LUCIA CAPORASO
We construct modular Deligne-Mumford stacks Pd,g representable over Mg parametrizing Néron models of Jacobians as follows. Let B be a smooth curve and K its function field, let XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model N(PicXK ) → B is then the base change of Pd,g via the moduli map B −→ Mg of f , i.e.: N(PicXK ) ∼= Pd,g ×Mg B. Moreover Pd,g is c...
متن کاملQuantitative Néron theory for torsion bundles
Let R be a discrete valuation ring with algebraically closed residue field, and consider a smooth curve CK over the field of fractions K. For any positive integer r prime to the residual characteristic, we consider the finite K-group scheme PicCK [r] of r-torsion line bundles on CK . We determine when there exists a finite R-group scheme, which is a model of PicCK [r] over R; in other words, we...
متن کاملIntersection Numbers of Extremal Rays on Holomorphic Symplectic Varieties
Suppose X is a smooth projective complex variety. Let N1(X,Z) ⊂ H2(X,Z) and N (X,Z) ⊂ H(X,Z) denote the group of curve classes modulo homological equivalence and the Néron-Severi group respectively. The monoids of effective classes in each group generate cones NE1(X) ⊂ N1(X,R) and NE (X) ⊂ N(X,R) with closures NE1(X) and NE 1 (X), the pseudoeffective cones. These play a central rôle in the bira...
متن کامل